CEL\&ETL - General Electronics

Monday, 16/11/2015 08:30-11:30

WORKFORCE DEVELOPMENT AUTHORITY

P.O. BOX 2707 Kigali, Rwanda Tel: (+250) 255113365

# ADVANCED LEVEL NATIONAL EXAMINATIONS, 2015, TECHNICAL AND PROFESSIONAL TRADES 

## EXAM TITLE: General Electronics <br> OPTIONS: - Computer Electronics (CEL) <br> - Electronics and Telecommunication (ETL) <br> DURATION: 3hours

## INSTRUCTIONS:

The paper is composed of three (3) Sections:
Section I: Fifteen (15) questions, all Compulsory. 55marks
Section II: Five (5) questions, Choose Three (3) only. 30marks
Section III: Three (3) questions, Choose only One (1). 15marks

Every candidate is required to strictly obey the above instructions. Punishment measures will be applied to anyone who ignores these instructions.

2marks
2marks
2marks
2marks

05. Give the value of resistor for the figure below, using color code.

## Brown, black, red, silver



2marks
06. Refer to the given formula, give the four factors affecting resistor.

$$
R=\rho \frac{\ell}{A} \text { ohm }
$$

7. From the given binary number 01101011 show the MSB and the LSB.

4marks
10. Identify each of the op-amp configurations in figure (a), (b), (c).

11. Identify each type of filter response (low-pass, high-pass, band-pass, or band-stop filter) in figure (a),(b),(c),(d)

(a)

(b)

(c)

(d)
12. For the summing op amp shown in figure below, determine the output voltage, $V_{o}$


## 4marks

13. Determine $I_{D}, V_{D 2}$, and $V_{o}$ for the circuit of figure below.


## 6marks

14. Determine the peak value of the output voltage for the circuit of the following figure


6marks
15. Light Emitting Diodes are made from compound type semiconductor materials such as $\qquad$

Section II. Answer any three (3) questions of your choice
(Do not choose more than three questions). 30marks
16. For the circuit of Figure shown below calculate:
(i) The current drawn from the source,
(ii) The p.d.(potential difference) across each resistor.


10marks
17. A $3 \mu \mathrm{~F}$ capacitor is charged from a 250 V d.c. supply. Calculate the charge and energy stored. The charged capacitor is now removed from the supply and connected across an uncharged $6 \Omega \mathrm{~F}$ capacitor. Calculate the p.d. between the plates and the energy now stored by the combination.

## 10marks

18. Give the name and briefly explain the working operation of the circuit below.


10marks
19. The figure below shows a $9.1 \mathrm{~V}, 500 \mathrm{~mW}$ zener diode which is used to. supply a $2.5 \mathrm{k} \Omega$ load. The diode has a slope resistance of $1.5 \Omega$, and the input supply has a nominal value of 12 V .
(a) Calculate a suitable value for the series resistor Rs.
(b) Calculate the value of diode current when the load resistor is connected to the circuit.
(c) If the input supply voltage decreases by $10 \%$, calculate the percentage change in the p.d. across the load.


10marks
20. a. Show Main parts of cathode ray tube on neat sketch.
b. The deflection sensitivity of a CRT is $0.03 \mathrm{~mm} / \mathrm{V}$. If an unknown voltage is applied to the horizontal plates, the spot shifts 3 mm horizontally. Find the value of unknown voltage.

10marks

## Section III. Answer any one (1) question of your choice (Do not choose more than one question). <br> 15marks

21. a) Describe how a simple CRO is adjusted to give
i) a spot trace,
ii) a continuous horizontal trace on the screen, explaining the functions of the various controls.
b) A sinusoidal voltage trace displayed by a CRO is shown in Figure below. If the 'time/cm' switch is on $500 \mu \mathrm{~s} / \mathrm{cm}$ and the 'volts $/ \mathrm{cm}$ ' switch is on 5 $\mathrm{V} / \mathrm{cm}$, find, for the waveform,
i) the frequency,
ii) the peak-to- peak voltage,
iii) the amplitude,
iv) the r.m.s. value.

15 marks

22. A filter section is to have a characteristic impedance at zero frequency of $600 \Omega$ and a cut-off frequency at 5 MHz Design:
(a) a low-pass T section filter, and
(b) a low-pass $\Delta$ section filter to meet these requirements.
23. The circuit of Fig. below is designed to produce nearly constant current through the variable collector load resistance. An ideal 6 V source is used to establish the current. Determine:
(a) Value of $I_{C}$ and $V_{E}$,
(b) Range of $\mathrm{R}_{\mathrm{C}}$ over which the circuit will function properly.

Assume silicon transistor and values in $a, b$ are large enough to justify the assumptions used.


15 marks

