

ADVANCED LEVEL NATIONAL EXAMINATIONS, 2015, TECHNICAL AND PROFESSIONAL TRADES

EXAM TITLE: General Electronics

- **<u>OPTIONS:</u>** Computer Electronics (CEL)
 - Electronics and Telecommunication (ETL)
- **DURATION:** 3hours

INSTRUCTIONS:

The paper is composed of three (3) Sections :	-
Section I: Fifteen (15) questions, all Compulsory.	55marks
Section II: Five (5) questions, Choose Three (3) only.	30marks
Section III: Three (3) questions, Choose only One (1).	15marks

<u>Every candidate is required to strictly obey the above</u> <u>instructions. Punishment measures will be applied to anyone</u> <u>who ignores these instructions.</u>

WDA/TVET/ETL & CEL — General Electronics — Academic Year 2015

(a)

(b)

(c)

11. Identify each type of filter response (low-pass, high-pass, band-pass, or band-stop filter) in figure (a),(b),(c),(d)6marks

12. For the summing op amp shown in figure below, determine the output voltage, V_o

4marks

13. Determine I_D , V_{D2} , and V_o for the circuit of figure below.

6marks

14. Determine the peak value of the output voltage for the circuit of the following figure

6marks

Section II. Answer any three (3) questions of your choice (Do not choose more than <u>three questions</u>). 30marks

16. For the circuit of Figure shown below calculate:

- (i) The current drawn from the source,
- (ii) The p.d.(potential difference) across each resistor.

10marks

- 17. A 3 μ F capacitor is charged from a 250 V d.c. supply. Calculate the charge and energy stored. The charged capacitor is now removed from the supply and connected across an uncharged 6 Ω F capacitor. Calculate the p.d. between the plates and the energy now stored by the combination. 10marks
- 18. Give the name and briefly explain the working operation of the circuit below.

10marks

- **19.** The figure below shows a 9.1 V, 500 mW zener diode which is used to supply a 2.5 k Ω load. The diode has a slope resistance of 1.5 Ω , and the input supply has a nominal value of 12 V.
 - (a) Calculate a suitable value for the series resistor Rs.
 - (b) Calculate the value of diode current when the load resistor is connected to the circuit.

WDA / TVET / ETL & CEL — General Electronics — Academic Year 2015

(c) If the input supply voltage decreases by 10%, calculate the percentage change in the p.d. across the load.

10marks

20. a. Show Main parts of cathode ray tube on neat sketch.

b. The deflection sensitivity of a CRT is 0.03 mm/V. If an unknown voltage is applied to the horizontal plates, the spot shifts 3 mm horizontally. Find the value of unknown voltage. **10marks**

Section III. Answer any one (1) question of your choice (Do not choose more than one question). 15marks

21. a) Describe how a simple CRO is adjusted to give

- i) a spot trace,
- ii) a continuous horizontal trace on the screen, explaining the functions of the various controls.
- b) A sinusoidal voltage trace displayed by a CRO is shown in Figure below. If the 'time/cm' switch is on 500 μ s/cm and the 'volts/cm' switch is on 5 V/cm, find, for the waveform,
 - i) the frequency,
 - ii) the peak-to- peak voltage,
 - iii) the amplitude,
 - iv) the r.m.s. value.

22. A filter section is to have a characteristic impedance at zero frequency of 600Ω and a cut-off frequency at 5 MHz Design:

(a) a low-pass T section filter, and

(b) a low-pass Λ section filter to meet these requirements.

15 marks

15 marks

WDA / TVET / ETL & CEL — General Electronics — Academic Year 2015

23. The circuit of Fig. below is designed to produce nearly constant current through the variable collector load resistance. An ideal 6V source is used to establish the current. Determine:

(a) Value of I_C and V_E ,

(b) Range of R_c over which the circuit will function properly.

Assume silicon transistor and values in a, b are large enough to justify the assumptions used.

15 marks

WDA / TVET / ETL & CEL — General Electronics — Academic Year 2015